1.1 气缸是往复压缩机压缩气体的部件,它承受气体压力、镜面与活塞环支承环摩擦力、以及压缩气体时产生的热量。气缸的结构复杂,有气道
、水道、气阀腔。气缸要求有足够的强度、抵御磨损的硬度和粗糙度、以及良好的传热性能。
气缸上部有缸盖,下部有缸座,组成气缸的工作容积。压缩机的气缸为铸铁制造。由于经过多年运行,均有不同程度磨损或划伤,尤其是高压级
缸的磨损和划伤更为严重,这将加快活塞环和支承环的磨损,并造成活塞环串气,降低效率,增加功率消耗。
上述情况,均影响活塞环的寿命和密封效果。造成活塞环密封串气,排气温度高,活塞环损坏快(甚至折断),严重时引起前一级排气压力增高,
压比增大,温度高,甚至安全阀报警。
为什么说有的缸嵌缸套有风险?其原因:一是嵌缸套时须先将原缸径加大,而加大缸径就有可能出现铸造时存在的砂眼、气孔、疏松等缺陷,使气缸
漏水报废。二是嵌缸套后,装气阀的止口很薄,容易出现强度不够或漏气。故嵌缸套的方法要慎重对待,更换新气缸是最把握的选择。
1.3.5 新气缸加工完后应进行水压验证,试验压力应是工作压力的1.5倍,历时30分钟以上。但有时水道壁的裂纹不是先天性的,而是后来埋下隐患,如
冬季停机时气缸内有存水而冻裂;运输、装卸或安装时,碰撞引起内伤,甚至裂纹,后来开机时逐渐扩大等原因所致,因此,各种行为都应该防止碰撞。
1.3.6 冷却器泄漏,会造成水随同气体进入下一级气缸,容易造成水击现象。为此冷却器出厂前应进行水压实验,水压实验的压力应是设计时压力的1.5
倍。
压缩机铝活塞较多,要求孔与活塞杆上的定位面不能超差,与活塞杆装配时,螺母和活塞间的两个接触面要贴合好,因该两个接触面是传递活塞力的。
铝的承压强度低,故在其端部设一铁材质承压块与活塞杆的
台肩衔接。要求承压块与铝活塞接触面贴合在75%以上,而活塞杆上的台肩与承压面贴合在70%以上,否则会引起活塞杆螺纹与螺母拧紧时产生附加
的偏心应力,出现活塞杆断裂问题,螺母拧紧后,应有防松动结构,以防螺母松动。
活塞装入气缸后,位置要正,圆周要有间隙,防止活塞与气缸壁摩擦,因此,要检查活塞在气缸中的圆周间隙的均匀情况。检查方法:用卡尺测得缸径
减活塞外径后除以2即为理论间隙,用塞尺测出圆周间隙与理论间隙比较,找出间隙偏差的原因,通常希望下部间隙大于理论间隙,这对支承环的寿命
有益处,所以有的欧洲厂家将活塞(支承环)与活塞杆连接的中心孔,下降1mm左右(按活塞直径大小数值不同),使活塞在气缸中上抬,称为偏心活
塞(缺点是活塞定位装配)。
如果活塞下沉数值较大,则应找出原因,如十字头与滑板间隙磨大,造成十字头与气缸不同轴;气缸偏磨;缸体与中间接筒连接错位,新缸体与中体连
接面不平行、对轴心线不垂直等,应采取相应措施。
压铅法压活塞在气缸中的轴侧间隙,可通过活塞杆与十字头连接螺纹予以调整,缸盖安装好后,再压盖侧间隙,盖侧间隙如按出厂文件要求相差较多时,
可通过加垫方法解决。
活塞在气缸中的止点间隙形成余隙,余隙所形成的容积(包括气阀、活塞余隙容积)。对压缩机来讲,大了是有害的,第一级大了使压缩机的排气量降
低,但是气缸与活塞必须有间隙,该间隙的作用:
(2)空气中含有水份,经压缩冷却有部分水残留在气缸中,气缸的止点余隙便容纳了部分不能排出的液体,否则液体的不可压缩性将造成破坏性的后
果,通常称水击或液击。
2.6.1 三瓣铝活塞中的活塞环槽部分,因铝材质比较软,活塞环槽在活塞环的不断撞击下已被打宽,尤其是高压级第一道环。也有的活塞环槽部分是由铁
材质制成,此种情况要比铝材质的好。那么为什么不采用铁活塞?这主要是出于活塞重量的原因,活塞运动时,活塞的重量产生惯性力。如果惯性力不
平衡,将引起机器振动。
2.6.2 活塞大多都更换过,有的更换过几次,新活塞往往都是测绘制造,由于测绘厂家不同,造成活塞环槽和支承环槽的轴向宽度和径向深度不同,所以
不同地区同一机型的活塞环、支承环调借后,有的装不进槽内,尤其是支承环更为严重。为此采取三条措施,一是从活塞环、支承环入手,使其对宽些窄
些、深些浅些的环槽都能用,但这不是最佳状态。二是差别较大的,专厂专制专用。
连杆与十字头连接,将曲轴的旋转运动转变为往复运动。连杆传递活塞力,是受力部件,也是故障较高的零部件。压缩机因连杆断裂造成事故,打坏十字
头、滑道、活塞、刮油器等部件。严重时打碎机身、使曲轴变形。
3.1.1 连杆大头是可分的,内装轴瓦,由连杆螺栓将杆身与大头盖装配在曲柄销上。对大头盖和杆身两螺栓孔的同轴度、螺栓的定位面、与连杆螺栓连接的
两支承面都有严格要求。
连杆螺栓承受很大的交变载荷,是运动机构中受力情况最严重的零件。由连杆造成的压缩机事故,往往是连杆螺栓引起的。它要有足够的抗拉强度和抗疲劳
性,因此在选材、制造包括过渡圆角和粗糙度、装配都不可以掉以轻心。
活塞杆一端与活塞连接,另一端与十字头连接。活塞杆依靠杆上的台肩及螺母把活塞固定在杆上。杆的另一端螺纹旋入十字头中。运行中活塞杆受拉压交变
应力,有时出现断裂造成活塞、气缸、十字头等不同情况的事故。
活塞杆两端均以螺纹分别与活塞、十字头连接。螺纹底面是危险截面,容易造成活塞杆断裂,而与十字头连接处的螺纹受力大于活塞杆与活塞连接处的螺纹,
因此靠十字头侧的螺纹更容易断裂。
4.2.1 活塞杆台肩与铝活塞连接处都有一个承压套或承压垫,以减少对铝活塞的承压比压。但有时活塞、承压套、活塞杆抬肩这三个面平面贴合不匀,长期运
行,使螺纹疲劳破坏。